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Program Status 

2008 Launch 

2009 Preliminary Design Review 

2010 Critical Design Review 

2012 PW1217G Engine First Flight 

2013 Final Assembly Commenced 

2015 First Flight 

2017 First Delivery 
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General Arrangement 

Fuel Efficiency 

    without Compromising Cabin Comfort 
 - High Aspect Ratio Wing 

 - High Fineness Ratio Fuselage 

 - Sharp Nose 
 

 Innovative GTF Engine 
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Key Features 

Airlines 

Most Efficient  
Aircraft 

Environment 

Lowest Fuel Burn, 
Noise, Emissions 

Passengers 

Most Comfortable  
Cabin 
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State‐of‐the‐Art Technologies 

Composite 
Structure 

GTF Engine  
Advanced Aerodynamics 

Passenger-Oriented Cabin Human-Centered Cockpit 
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MRJ Family 

Commonality 

Commonality 

MRJ100X (Plan) 

MRJ90 

MRJ70 
76 seats 

88 seats 

100 seats 

 Ultimate Commonality - Same Pilot Type Rating 
- Same Engines  
- Same Maintenance Program 
- Same Spare Parts 

Typical single-class seating at 31” pitch 

7 



CONFIDENTIAL – MHI proprietary, MITAC proprietary 

Principal Characteristics - MRJ90 

† NOT include Unusable Fuel  
*  ISA, No Wind, LRC, Alternate 100nm 

  MRJ90STD MRJ90ER MRJ90LR 

Passengers 88 (Typical single-class seating at 31” pitch) 

Cargo compartments  m3 (ft3) 18.2 (644) 

Engine PurePower® PW1217G Engine 

Thrust kN (lbｆ) 78.2 (17,600) x 2 

Maximum takeoff weight kg (lb) 39,600 (87,303) 40,995 (90,378) 42,800 (94,358) 

Maximum landing weight kg (lb) 38,000 (83,776) 38,000 (83,776) 38,000 (83,776) 

Maximum zero-fuel weight kg (lb) 36,150 (79,697) 36,150 (79,697) 36,150 (79,697) 

Operational empty weight kg (lb) 25,100 (55,336) 25,100 (55,336) 25,100 (55,336) 

Fuel capacity † lit. (USG) 12,100 (3,200) 12,100 (3,200) 12,100 (3,200) 

Range * @88PAX x 102kg (225lb) km (nm) 2,120 (1,150) 2,870 (1,550) 3,770 (2,040) 

Maximum operating mach number M 0.78 M 0.78 M 0.78 

Maximum operating altitude m (ft) 11,900 (39,000) 11,900 (39,000) 11,900 (39,000) 

Takeoff field length (MTOW, SL, ISA) m (ft) 1,490 (4,890) 1,600 (5,250) 1,740 (5,710) 

Landing field length (MLW, Dry) m (ft) 1,480 (4,860) 1,480 (4,860) 1,480 (4,860) 

Approach speed (MLW) km/h (kt) 252 (136) 252 (136) 252 (136) 
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Range Capability: PARIS 

Paris 

Reykjavik 

Oslo Moscow 

Kiev 

Athens 

Bucharest 

Ankara 

Algiers 

London 
Warsaw 

Lisbon 

Rabat 

ISA, 85% Annual Wind, LRC @37,000ft, Alternate 100nm, 5% Airways Allowance 
Payload : MRJ90 88PAX X 102kg (225lb), MRJ70 76PAX X 102kg (225lb) 

MRJ90 

MRJ70 
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Significant Noise Reduction 

 Noise area reduced by 40% 
 Great benefit by lower community noise 
  - Lower noise charge 
  - Extending operations into noise curfews 
  - Free from noise abatement flight tracks and runways 

* Mitsubishi Aircraft Estimation at Schiphol Airport (AMS) 

MRJ90 E190 

       85 dBA 
       80 dBA 
       75 dBA 
       70 dBA 

       Flight Path 

       85 dBA 
       80 dBA 
       75 dBA 
       70 dBA 

       Flight Path 
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Most Environmentally Friendly 

0%

20%

40%

60%

80%

100%

NOx CO HC Smoke

Characteristic
% of

Reg. limit.

70% 85% 75% 50% 

MRJ 

E190 

CRJ900 

ICAO CAEP/6 Requirements 

Characteristic 
% of               

reg. limit. 

Greenest in class to meet future environmental requirement 
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Best Cabin Comfort 

18 in 
116.5 in 

116.5 in 

79 in 

118.5 in 

18.25 in 

19.75 in 

108.0 in 

132 in 

Largest in class 

Equivalent to 787 
Widest and Highest in class 

108.5 in 

80 in 

18.5 in 
17.3 in 

74.4 in 

106 in 

106.0 in 

100.5 in 

16.1 in 

E170/190 CRJ700/900 

† IATA-recommended maximum size bag 
   (56 x 45 x 25 cm (22 x 18 x 10 in)) 
* Passenger Scale： 74 in (1.88 m) (US Male 97.5 %ile) 

MRJ70/90 

 Widest and Highest Cross Section 

 Widest Seat 

 Largest Overhead Bin 
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Game Changing Fuel Efficiency 

* Mitsubishi Aircraft Estimation, Single Class Typical Seat, LRC, 500nm Trip 

80 seats 

120 seats 

100 seats 

140 seats 

160 seats 

Current RJ 

MRJ 
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Orders Received 
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Roll-out 

2014.10.18 
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Low Speed Taxi Test 

This picture is available for public use. 
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Diagram of Product Development 
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OEM:  System Integration 

Airworthiness Certification 
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Diagram of System Integration (Design) 
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Diagram of System Integration (Design : Airplane System) 
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Example:  Engine Integration 
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①Technology Readiness – High Bypass Ratio Engine 

21 

Source:  http://www.aeronautics.nasa.gov/events/tgir/2003/ppt/maclin/maclin.pdf 

Geared Turbo Fan Engine has emerged for step change fuel efficiency 
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clearance 

Ground Clearance (Nose Landing Gear Collapse) 
  Avoid damage on engine at hazardous situation 
 

Source:  http://www.a350xwb.com 

②Design Constraints  

Water Ingestion Prevention 
  Avoid water ingestion into engine at landing on water contaminated runway  
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  ③System Analysis: Rotor Burst 

Avoid simultaneous loss of system for continued safe flight and landing 

RH Turbine Swept Path 

Fan Blade / Turbine 
Swept Area 

RH Fan Swept Path 
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Integrated Test 

Thrust reverser performance and 
impact by thrust reverser airflow are 
evaluated by wind tunnel test and CFD 

④System Analysis: Thrust Reverser 

Evaluate performance and impact by thrust reverser airflow 

Isolated Test 
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⑤Design Synthesis: Lower Wing Surface 

Complex lower wing contour made possible  
by advanced forming technology 

Forming portion 

Ultrasonic Peen Forming 

Needle pins 

Ultrasonic Vibration 
・ Steep span-wise curvature to house  
   large diameter engine with clearance  

・ Sophisticated chord-wise airfoil shape 
   for excellent aerodynamic performance 
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⑥Design Synthesis: Nacelle Position 

Optimized position for interference drag and structural weight  
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Careful tailoring in Pylon/Nacelle Configuration 
 -  Optimization by CFD 
 -  Free from shock and separation 

Initial Optimized 

⑦Design Synthesis: Aerodynamic Contour 
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Thank you for your attention 
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