Overview of MRJ Program and Systems

ICAS Biennial Workshop – 2015 "Complex Systems Integration in Aeronautics" August 31, 2015 Krakow, Poland

Junichi Miyaka

Fellow, Senior Chief Engineer Mitsubishi Heavy Industries Ltd

This document contains confidential and proprietary information of each of Mitsubishi Heavy Industries (MHI), Mitsubishi Aircraft Corporation (MITAC) and TORAY. Neither this document, nor any information in it, shall be used, reproduced, or disclosed to third parties without the prior written consent of each of MHI, MITAC and TORAY. Any permitted reproduction of this document, in whole or in part, shall include this notice.

- 1. Program Overview
- 2. Diagram of System Integration
- 3. Example in MRJ Design

ITSUBISHI

Program Status

✓ 2008 Launch

- ✓ 2009 Preliminary Design Review
- ✓ 2010 Critical Design Review
- ✓ 2012 PW1217G Engine First Flight
- ✓ 2013 Final Assembly Commenced
 - 2015 First Flight
 - 2017 First Delivery

General Arrangement

• Fuel Efficiency

without Compromising Cabin Comfort

- High Aspect Ratio Wing
- High Fineness Ratio Fuselage
- Sharp Nose
- Innovative GTF Engine

Key Features

Environment

Lowest Fuel Burn, Noise, Emissions

Passengers Most Comfortable Cabin

Airlines

Most Efficient Aircraft

State-of-the-Art Technologies

MRJ Family

 Ultimate Commonality - Same Pilot Type Rating - Same Engines - Same Maintenance Program - Same Spare Parts MRJ100X (Plan) []0000 100 seats Commonality MRJ90 MRI 88 seats Commonality MRJ70

MR

Typical single-class seating at 31" pitch

ITSUBISH

Principal Characteristics - MRJ90

		MRJ9	0STD	MR、	J90ER	MRJ	90LR
Passengers		88 (Typical single-class seating at 31" pitch)					
Cargo compartments	m ³ (ft ³)	18.2 (644)					
Engine		PurePower [®] PW1217G Engine					
Thrust	kN (lbf)	78.2 (17,600) x 2					
Maximum takeoff weight	kg (lb)	39,600	(87,303)	40,995	(90,378)	42,800	(94,358)
Maximum landing weight	kg (lb)	38,000	(83,776)	38,000	(83,776)	38,000	(83,776)
Maximum zero-fuel weight	kg (lb)	36,150	(79,697)	36,150	(79,697)	36,150	(79,697)
Operational empty weight	kg (lb)	25,100	(55,336)	25,100	(55,336)	25,100	(55,336)
Fuel capacity [†]	lit. (USG)	12,100	(3,200)	12,100	(3,200)	12,100	(3,200)
Range [*] @88PAX x 102kg (225lb)	km (nm)	2,120	(1,150)	2,870	(1,550)	3,770	(2,040)
Maximum operating mach number		M 0.78		M 0.78		M 0.78	
Maximum operating altitude	m (ft)	11,900	(39,000)	11,900	(39,000)	11,900	(39,000)
Takeoff field length (MTOW, SL, ISA)	m (ft)	1,490	(4,890)	1,600	(5,250)	1,740	(5,710)
Landing field length (MLW, Dry)	m (ft)	1,480	(4,860)	1,480	(4,860)	1,480	(4,860)
Approach speed (MLW)	km/h (kt)	252	(136)	252	(136)	252	(136)

† NOT include Unusable Fuel

* ISA, No Wind, LRC, Alternate 100nm

Range Capability: PARIS

ISA, 85% Annual Wind, LRC @37,000ft, Alternate 100nm, 5% Airways Allowance Payload : MRJ90 88PAX X 102kg (225lb), MRJ70 76PAX X 102kg (225lb)

Significant Noise Reduction

- Noise area reduced by 40%
- Great benefit by lower community noise
 - Lower noise charge
 - Extending operations into noise curfews
 - Free from noise abatement flight tracks and runways

* Mitsubishi Aircraft Estimation at Schiphol Airport (AMS)

Greenest in class to meet future environmental requirement

Best Cabin Comfort

- Widest and Highest Cross Section
- Widest Seat
- Largest Overhead Bin

ITSUBISHI

Game Changing Fuel Efficiency

* Mitsubishi Aircraft Estimation, Single Class Typical Seat, LRC, 500nm Trip

Orders Received

	Orders	Option/ Purchase Right		
	15	10		
TH TRANS STATES HOLDINGS	50	50		
SKYWEST, INC.	100	100		
Air Mandalay	6	4		
EASTERN	20	20		
🤪 JAPAN AIRLINES	32	-		
Total	223	184		
	407			

MITSUBISHI HEAVY INDUSTRIES, LTD.

Roll-out

2014.10.18

MITSUBISHI HEAVY INDUSTRIES, LTD.

Low Speed Taxi Test

MITSUBISHI HEAVY INDUSTRIES, LTD.

Diagram of System Integration (Design)

Diagram of System Integration (Design : Airplane System)

Example: Engine Integration

Geared Turbo Fan Engine has emerged for step change fuel efficiency

TSUBISH

2 Design Constraints

Ground Clearance (Nose Landing Gear Collapse)

Avoid damage on engine at hazardous situation

Water Ingestion Prevention

Avoid water ingestion into engine at landing on water contaminated runway

Source: http://www.a350xwb.com

Avoid simultaneous loss of system for continued safe flight and landing

④System Analysis: Thrust Reverser

Evaluate performance and impact by thrust reverser airflow

Thrust reverser performance and impact by thrust reverser airflow are evaluated by wind tunnel test and CFD

Complex lower wing contour made possible by advanced forming technology

Ultrasonic Peen Forming

- Steep span-wise curvature to house large diameter engine with clearance
- Sophisticated chord-wise airfoil shape for excellent aerodynamic performance

Optimized position for interference drag and structural weight

ITSUBISH

Careful tailoring in Pylon/Nacelle Configuration

- Optimization by CFD
- Free from shock and separation

Flying into the future.

THIN I WANTER

NUMBER

Thank you for your attention

www.mrj-japan.com